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SUMMARY

Biological organism always tends to behave non-linearly contrary to linear growth as perceived in most of the data analysis
procedure. In the present communication, a simple nonlinear logistic growth model has been developed to describe the population
dynamics of incidence of downy mildew in grapes (cv. Anab-E-Sahai) so as to workout quantitative information about the
biological parameters concerning intrinsic infection rate and maximum mildew severity over time-epoch. Statistical analysis
of disease severity data over time period for three years (2004-05 to 2006-07) using non linear growth models revealed that
98% of the variability in disease progression over time-epoch was captured by nonlinear models. Nonlinear models developed
were then used to construct area under disease progression over time period. Results showed that, in general, the rate of disease
severity was maximum during fifth- sixth week after fore-pruning, calling for appropriate management strategies for controlling
the disease within the period identified, thus avoiding crop loss. Before taking final conclusion about the model, the model-
generated residuals were tested for their robustness using statistical techniques. SAS Programming codes were constructed to
develop the nonlinear growth models.

Keywords: Coefficient of determination, Downy mildew, Gompertz model, Grapes, Logistic model, SAS programming, Weather
factors.

1. INTRODUCTION Downy mildew is one of the most destructive vine

diseases known. It occurs especially in regions that are

Grape (Vitis SPP.) is an important crop for the
farmers for getting higher returns and with consumer
for delicacy and as a medicinal fruit. Though, the crop
suffers greatly because of the attack of different
diseases, but among them downy mildew caused by
Plasmopara viticola (Berk. and Curt.) De Toni is the
most serious and involves more investment from the
farmers for its management. In order to reduce cost of
production, the farmers have to employ the control
measures judiciously and need based. For this, the
knowledge on the disease progression vis-a-vis
amalgamated effect of climatic factors on disease
incidence is very much important, for framing any
successful management strategies.
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warm and wet during the vegetative growth stage of the
vine when control is poor and /or weather conditions
are favorable, the disease may cause crop loss due to
total or partial destruction of grape bunches, and also
due to the secondary influence of foliage loss. While
crop losses may range from 10 to 20%, if poor control
is exercised, favorable weather conditions, especially
during flowering, may even cause total (100%) crop
loss (Magarey et al. 1994). In India downy mildew
occur every year and hampers the production and
quality of commercially grown grape varieties. Even
complete failure of the crop has been reported (Reddy
and Reddy 1983). For the management of the disease
fungicidal usage is in vogue (Rawal 2008), which is
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very expensive and involves a lot of efforts. Farmers
spray chemicals indiscriminately to contain the disease.
Prevailing weather conditions influence the onset,
initiation and progression of disease, besides others.
Moreover, in grapes backward (May-June) and fore
pruning (September-October) are the two pruning
strategies adopted by researchers and farmers in the
entire crop growth period. Rate of progression of
disease over time epoch definitely plays a different role
in both the pruning period studies. It was also known
to the growers that managing the downy mildew in Fore
pruning period is very difficult than in backward
pruning period.

Furthermore, such a disease progression over time-
epoch of a biological organism is rarely of linear nature.
Accordingly, in this communication, suitable nonlinear
growth models were employed and utilized to arrive at
a decision to orient suitable management strategy for
saving the crop.

2. MATERIALS AND METHODS

2.1 Database

Downey mildew disease initiation and further
progression over time period for three years (2004-05
to 2006-07) recorded (Rawal et al. 2008) at the
experimental plot of Indian Institute of Horticultural
Research, Bangalore, were utilized for this study.
Disease ratings were recorded at weekly interval by
following 0 — 5 scale, where 0 = nil PDI; 1 = 0 > PDI
<10;2=11=2PDI<25;3=26=PDI<50;4=512
PDI < 75 and 5 = > 76 Per cent Diseases Intensity
(PDI). Data thus recorded were converted to Percent
Disease Index by following Mcknney (1923). Role of
weather factors on the incidence of downy mildew is
reported by Rawal et al. 2008 and hence this
communication address specifically about the
application of non-linear models, which other-wise
were not addressed earlier.

2.2 Some Important Non-linear Growth Models

Nonlinear growth models which describe the
growth behaviour over time are applied in many fields.
In the area of population biology, growth occurs in
plants, animals, organisms, etc. The type of model
needed in a specific situation depends on the type of
growth that occurs. In general, growth models are
mechanistic in nature, rather than empirical. In the

former, the parameters have meaningful biological
interpretation; the latter is just like a ‘black-box’ where
some input is given and some output is taken out. A
mechanistic model usually arises as a result of making
assumptions about the type of growth, writing down
differential or difference equations that represent these
assumptions, and then solving these equations to obtain
a growth model. The utility of such models is that, on
one hand, they help us to gain insight into the
underlying mechanism of the system and on the other
hand, they are of immense help in efficient
management. We now discuss briefly some well-known
nonlinear growth models (Prajneshu 2009).

If N(f) denotes the population size or biomass at
time 7 and 7 is the intrinsic growth rate, then the rate
of growth of population size, due to Malthus law, is
given by

dN
—=7rN. 1
r ey
Integrating, we get
N(@) = N, exp (r1), )

where N_ denotes the population size at #= 0. Thus this
law entails an exponential increases for » > 0.
Furthermore, N(f) — o as t — oo which cannot happen
in reality.

Note. The parameter » is assumed to be positive in all
models.

Logistic Model. This model is represented by the
differential equation

dN N
Eer(l_E) (3)

Integrating, we get

K

)
{1+[K—1Je‘”}
N,

The graph of N(¢) versus ¢ is elongated S-shaped
and the curve is symmetrical about its point of
inflexion.

N(t) =

The equation (4), may equivalently written as

Y =——+e, b=£—1 (5)
(1+bear) Y,
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Gompertz Model. This is another model having a
sigmoid type of behaviour and is found to be quite
useful in biological work. However, unlike the logistic
model, this is not symmetric about its point of inflexion.

The differential equation for Gompertz model is
dN K
—=rN log.| —
e g
Integration of this equation yields

N(z):Ke[l"ge%”’} (7

The equation (7), may equivalently written as

o

Yt — C*e(—b*efat) +e, b= ln(i] (8)

where under all these models,

Y, - percentage of disease incidence during the time
L

a, b, c and d are the parameters, e the error term.

a is the intrinsic growth rate.

b refers to the incremental relative rate of relative
growth rate of the disease.

Y corresponds to age of theoretical zero size,
which also represents time when the growth

curve crosses the r-axis

¢ represents the carrying capacity for each model.

In order to fit these non-linear growth models for
the disease severity data, Levenberg-Marquardt
technique (Ratkowsky 1990) was utilized and
programming codes were developed using Statistical
Analysis system (SAS) package available at IIHR,
Bangalore. PROC NLIN subroutine was utilized to
construct SAS codes (SAS-grapes-DM). Global
convergence of the parameter estimates were ensured
by trying different sets of initial values.

Measures of Model Adequacy

As a measure of goodness-of-fit, the value of
coefficient of determination (R?) (Kvalseth 1985) was
calculated as below:

Coefficient of Determination (R?)
R =1-[ZY, - Y2 /3Y, -V )], ©)

where Y, represents the percent disease incidence during
the period .

Residual Analysis

Before taking any final decision about the
statistical adequacy of the selected model, residual
analysis was also carried out using the one sample run-
test, for testing the randomness assumption and the
normality assumption of residuals were tested using
Shapiro-Wilk test (Siegel and Castellan 1988).

Area Under Disease Progressive Curve

Calculation of the area under the disease-progress
curve (AUDPC) as a measure of quantitative disease
resistance entails repeated disease assessments. For
typical sigmoid disease-progress curves, repeated
assessments may be unnecessary. A mathematical
procedure is derived for estimating the AUDPC from
two data points (Jeger and Viljanen-Rollinson 2001).

The AUDPCs were calculated directly from data
and estimated from the described equation.

h
Y d(N; =Ny

AUDPC =2 (10)

where,
N, denotes estimated disease severity at time /
h is the number of data
d is the interval between two data points

In this study, AUDPC values were calculated
separately for all the three years to know the severity
of disease progression. For all the data sets, weekly
growth of downy mildew was evaluated by computing

X
the values of the derivative E , for different values

Table 1. Results of Nonlinear Regression Analysis

Fore Logistic Gompertz

pruning

2004-05{2005-06 {2006-07| Pooled |2004-05[2005-06 | 2006-07 | Pooled

a 0.64 0.57 0.40 0.54 | 041 0.35 0.25 0.33

b 34742 136.6 69.5 |150.75] 27.1 142 9.8 15.12

c 91.37 923 89.4 89.8 | 934 | 9485 | 93.93 | 92.84
R*(%) 99 98 98 99 99 99 99 99

MSE 8.01 16.1 26.3 15.1 8.01 16 10.3 | 10.01

Run test (2)[2.52N% | 1.2% 1.5% 1 098* | 1.7* 2.1 22 24N

SWistat | 0.96* | 0.97* | 0.87* | 0.96* | 0.91* | 0.97* | 0.92* | 0.97*

AUDPC | 86.37 | 8548 | 78.19 - 6577 | 63.85 | 61.33

* indicates significance at 5% level.



22 R.Venugopalan ef al. / Journal of the Indian Society of Agricultural Statistics 69(1) 2015 19-25

of ¢, for both Logistic and Gompertz models.
Furthermore, it can be seen that time (7) for which the
downy mildew severity growth was maximum, is given

b
by t = Ln o AUDPC were calculated for each data

set and the results are reported in Table 1.

A perusal indicates that the values obtained by
logistic and Gompertz are ranged from 48 to 84 and 25
to 65 respectively for backward pruning data. However,
for the fore pruning data the results showed that
AUDPC values were higher as it ranged from 78 to 86
and 61 to 65 respectively.These results indicate that the
downy mildew rate of progression in Fore pruning is
much severe than in backward pruning. The graphs for
the rate of disease growth for the nonlinear models for
backward and fore pruning data sets are also presented.

3. RESULTS AND DISCUSSION

3.1 Nonlinear Statistical Modeling (Fore Pruning,
2004-05)

Results of data pertaining to Fore pruning (2004-
05) are presented in Table 1. Parameter estimates of
fitted models, measures of goodness of fit of these
models (R? and MSE) along with the tested, measures
of model adequacy were also presented. Results showed
that downy mildew severity over time (Fore pruning 1
year data) is explained by Logistic and Gompertz fit to
the extent of 99%. Mean square error values were equal
(8.01) in both the case of Gompertz fit and Logistic fit.
Further, examination of assumptions about residuals
show that errors are randomly distributed as the run test
statistics value (1.7) is well within the critical region
of 1.96, for Gompertz model only. However, both the
tests of normality (Shaprio Wilk test), resulted in
significant values for both the models. This further
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Fig. 1a. Graphical Representation of Logistic Model Fore
Pruning data sets
strengthens the statistical adequacy of the fitted models.
A graphical representation of fitted models is also
depicted (Fig. 1a and 1b).

3.2 Nonlinear Statistical Modeling (Fore Pruning,
2005-06)

Results of data pertaining to Fore pruning (second
year 2005-06) are presented in Table 1. Parameter
estimates of fitted models, measures of goodness of fit
(R? and MSE) along with the tested measures of model
adequacy were also presented. Results showed that
downy mildew severity over time (Fore pruning 2 year
data 2005-06) is explained by Logistic fit to the extent
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Fig 1b. Graphical Representation of Gompertz Model Fore
Pruning data sets

of 98% and by Gompertz fit to the extent of 99%. Mean
square error values were lesser (16.0) in the case of
Gompertz fit than Logistic fit (16.01). Further,
examination of assumptions about residuals show that
errors are randomly distributed as the run test statistics
value (1.2) is well within the critical region of 1.96, for
Logistic model only. However, both the tests of
normality (Shaprio Wilk test), resulted in significant
values for both the models. This further strengthens the
statistical adequacy of the fitted models. A graphical
representation of fitted models is also depicted (Fig. 1a
and 1b).

3.3 Nonlinear Statistical Modeling (Fore Pruning,
2006-07)

Results of data pertaining to Fore pruning (3 year
2006-07) are presented in Table 1. A parameter estimate
of fitted models measures of goodness of fit of these
models (R?> and MSE) along with the tested measures
of model adequacy was also presented. Results showed
that downy mildew severity over time (Fore pruning
third year data 2006-07) is explained by Logistic fit to
the extent of 98% and by Gompertz fit to the extent of
99%. Mean square error values were lesser (10.3) in the
case of Gompertz fit than Logistic fit (26.3). Further,
examination of assumptions about residuals show that
errors are randomly distributed as the run test statistics
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value (1.5) is well within the critical region of 1.96, for
Logistic model only. However, both the tests of
normality, resulted in significant values for both the
models. This further strengthens the statistical adequacy
of the fitted models. A graphical representation of fitted
models is depicted (Fig. 1a and 1b).

3.4 Nonlinear Statistical Modeling (Fore Pruning,
Pooled Data of 2004-05 to 2006-07)

Results of data pertaining to Fore pruning of
pooled data (2004-2007) are presented in Table 1.
Parameter estimates of fitted models measures of
goodness of fit of these models (R?> and MSE) along
with the tested measures of model adequacy were also
presented. Results showed that downy mildew severity
over time (Fore pruning of polled 2004-2007) is
explained by Logistic and Gompertz fit to the extent
of 99%. Mean square error values were lesser (10.01)
in the case of Gompertz fit than Logistic fit (15.1).
Further, examination of assumptions about residuals
show that errors are randomly distributed as the run test
statistics value (0.98) is well within the critical region
of 1.96, for Logistic model only. However, both the
tests of normality (Shaprio Wilk test), resulted in
significant values for both the models. This further
strengthens the statistical adequacy of the fitted models.
A graphical representation of fitted models is depicted
in Fig. 1.

Under all the models, the intrinsic disease growth
rate (the rate at which the disease period over time-
epoch) was computed to be 0.40 to 0.64 (for logistic
fit) and 0.25 to 0.41 (for gompertz fit). The carrying
capacity (maximum disease severity) which can be
attainable was also computed to be 89.4 to 92.3 (for
logistic fit) and 92.84 to 94.85 (for gompertz fit).

To know how the disease progressed over time
epoch for three different years, area under disease
progression is captured by a curve. The results are also
presented in Table 1.

Perusal of results showed that the disease
progression was more during the first year 2004-05 both
in logistic and Gompertz (86.37, 65.77 respectively) as
compared to second and third year of fore pruning. To
study further, how the rate of disease growth had
occurred over time epoch, the graphs for the rate of
disease growth for the nonlinear models are also
depicted in Fig. 2. Perusal of the graphs for fore pruning

data of first second and third year of logistic model fit
showed that rate of disease severity was maximum
during the sixth, sixth and fifth week respectively.
Perusal of the graphs for fore pruning data of first
second and third year of Gompertz models fit showed
that rate of disease severity was maximum during the
fifth, fourth, fourth week respectively. Hence,
appropriate management strategies for controlling the
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Fig. 2. Graphical Representation of AUDPC for Fore Pruning
data sets
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disease should be oriented within the period identified
in the investigation separately for backward and fore
pruning, as envisaged by the rate of disease growth. The
message arising out of this present investigation is that
proper prophylactic measures, if taken by considering
the model resulted results along with knowledge about
disease progression over time as depicted by nonlinear
models, not only results in an efficient and economic
management strategies for controlling downy mildew
incidence in grapes (cv Anab-E-Shai) but also
considerably reduce crop yield loss thereby providing
better return to the farmers. This methodology can be
very well utilized for developing disease forecasting
models for other crops also.
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